H3), 4.72 (dd, $J = 18$, 2.5, H18a), 4.82 (dd, $J = 18$, 2.5, H18b), 5.04 (tsep, $J = 7.2, 1.0, H13$), 5.45 (br s, H4); UV (EtOH) 227 (ϵ 6195), 208 (5162).

Reduction of **1** to **3.** A solution of 14.3 mg of **1** in 1 mL of absolute ethanol was treated with 5 mg of NaBH₄. The mixture was stirred at room temperature for 80 min and then quenched with several drops of **5%** HC1. After addition of 3 mL of water, the product was extracted four times with **3-mL** portions of diethyl ether and then dried over anhydrous K_2CO_3 . Filtration and evaporation of solvent left 12.7 mg of nearly pure 3, which **after** HPLC had α _D 24.3° (c 1.07, CHCl₃).

Reduction of 2 to **4.** This **was** analogous to preparation of 3 from **1** above. From 25 mg 2,22 mg of crude **4** was obtained. After purification by HPLC, ita spectral properties matched those of natural **4.**

Acetylation of 3 to **4.** To a solution of 13.0 mg of 3 in 1 mL of dry pyridine, 50 μ L of freshly distilled acetic anhydride was added, and the reaction was allowed to proceed at room temperature for 17 h. Methylene chloride (10 mL) **was** added, and the solution was washed with 10% HCl (2×), saturated CuSO₄ $(2\times)$, and $H₂O (1\times)$ to remove the pyridine. After drying with anhydrous MgSO, and removal of solvent, 12 mg of **4** remained, about 95% pure by 'H NMR. This material was purified by HPLC on Partisil M9 and Lichrosorb-ODS. From natural 3, $[\alpha]_D$ 14.2° *(c 1.21, CHCl₃)*; from synthetic 3, $[\alpha]_D$ 20.5° *(c 0.57, CHCl₃)*.

Acknowledgment. This research was supported by the National Science Foundation under Grant CHE-13938. The use of the NMR facilities, University of California, Riverside, supported by NIH Biomedical Science Grant 5-SO5-RR07010 and NSF Grant MPS75-06138, is gratefully acknowledged. The 500-MHz ¹H NMR data were acquired through use of the NSF Regional NMR Center at California Institute of Technology, NSF CHE79-16324.

Registry **No. 1,** 85443-36-3; 2, 85443-37-4; 3, 83845-31-2; **4,** 65043-52-9.

Supplementary Material Available: Tables listing final atomic coordinates and thermal parameters (Table A) and bond distances and angles (Table B) for **1** (6 pages). Ordering information is given on any current masthead page.

An Efficient Method for Synthesis of Symmetrical Diketones via Reaction of a-Amino-a-arylacetonitriles (Masked Acyl Anion Equivalents) with Alkyl Dibromides

Kazumasa Takahashi,* Masahiro Matauzaki, Katauyuki Ogura, and Hirotada Iida

Department *of* Synthetic Chemistry, Faculty *of* Engineering, Chiba University, Yayoi-cho, Chiba 260, Japan

Received June 3, 1982

Anions derived from α -amino- α -arylacetonitriles are related as masked acyl anion equivalents. The utility of their anions in the formation of carbon-carbon bonds has been reported.' The utilization of such masked acyl anions is, however, not universal. The choice of substituents α to the nitrile group appears to be critical. We report here a new synthetic method for symmetrical diketones by reaction of the masked acyl anions formed from α -(dimethylamino)- α -arylacetonitrile (1) and derivatives with alkyl dibromides followed by hydrolysis. Many synthetic routes to 1,4-diketones have been reported.² However,

this method is found to be useful for preparation of not only 1,4-diketones but also other symmetrical diketones having longer polymethylene chains.

Various α -amino- α -phenylacetonitriles $(1a-e)$ were prepared for investigation of the influence of the amino groups on the preferential formation of 2,5-diamino-2,5 diphenyladiponitriles **(2)** as the precursors of the corresponding diketones. The reactions of **la-e** with 1,2-dibromoethane were carried out in a mixture of tetrahydrofuran (THF) and hexamethylphosphoramide (HMPA) containing lithium diisopropylamide (LDA). When the amino group was dimethylamine (1a), the yield of 2 was superior to that obtained in the case of diethyl-

⁽¹⁾ McEvoy, F. J.; Albright, J. D. *J.* **Org.** *Chem.* **1979,** *44,* **4597** and references cited therein.

⁽²⁾ Kobayashi, **Y.;** Taguchi, T.; Tokuno, E. *Tetrahedron Lett.* **1977, 3741 and** the references cited therein.

amine (lb) and pyrrolidine **(IC)** (see Scheme I). The subsequent hydrolysis of 2 in a mixture of THF and 30% oxalic acid gave **1,4-diphenyl-1,4-butanedione (6)** in good yield. Interestingly, the reaction of α -morpholino- α phenylacetonitrile **(la)** with 1,2-dibromoethane did not give a 2 but afforded **2,3-dimorpholino-2,3-diphenyl**succinonitrile (21), **2-morpholino-2-pheny1-3-butenenitrile** (23), and a substantial amount of unreacted **Id** (see Scheme II). Hydrolysis of 21 and 23 gave benzil (22) and vinyl phenyl ketone **(24),** respectively. The reaction of **Id** with 1,2-bis(tosyloxy)ethane on the other hand, gave 2,5 **dimorpholino-2,5-diphenyladiponitrile (2d)** together with a substantial amount of unreacted **Id.** The reaction of α -(N-methylanilino)- α -phenylacetonitrile (1e) with 1,2dibromoethane did not proceed at **all.** Thus, the formation of 2 was affected significantly by the type of amino group in **1.**

The reaction of **la** with 1,3-dibromopropane was superior to that with 1,2-dibromoethane, giving $1,5$ -bis(dimethylamino)-1,5-dicyano-1,5-diphenylpentane (3a) in 80% yield. Subsequent hydrolysis of **3a** gave 1,5-diphenyl-1,5-pentanedione **(7)** in **84%** yield. Likewise, the reaction with 1,6-dibromohexane and 1,lO-dibromodecane gave **1,8-bis(dimethylamino)-1,8-dicyano-1,8-diphenyl**octane (4a) and 1,12-bis(dimethylamino)-1,12-dicyano-1,12-diphenyldodecane **(5a)** in good yields. Interestingly, **5a** was not isolated as a pure product, because part of the **5a** was hydrolyzed in a silica gel column, and a mixture of **5a** and the corresponding diketone **(9)** was always obtained. It has been reported that the silica gel procedure for hydrolysis transforms α -disubstituted aminonitriles directly into ketones.' In this work, however, only **5a** was hydrolyzed on a silica gel column. The hydrolysis of **4a** and crude **5a** containing a small amount of the diketone **9** afforded **1,8-diphenyl-1,8-octanedione (8)** and 1,12-di**phenyl-l,l2-dodecanedione (9)** in 98% and 84% overall yields from **la,** respectively. When the number of methylene groups between the two bromines was larger than two, the reaction with **la** proceeded more favorably. These results suggest that introduction of additional $CH₂$ groups between two bromines diminishes the repulsion toward access to the dibromides of two carbanions formed from **la** having bulky substituents such as cyano, dimethylamino, and phenyl.

In addition, the treatment of α -(4-methoxyphenyl)-, a-(4-chlorophenyl)-, and **a-(2-thienyl)-a-(dimethyl**amino)acetonitriles **(loa,** 1 **la,** and **12a)** with 1,2-dibromoethane and/or 1,3-dibromopropane afforded 2,5 bis(4-methoxyphenyl)-, **2,5-bis(4-chlorophenyl)-,** and 2,5 bis(**2-thienyl)-2,5-bis(dimethylamino)adiponitriles (13a, 14a,** and **15a)** and **1,5-dicyano-1,5-bis(dimethylamino)- 1,5-bis(2-thienyl)pentane (16a),** respectively. Hydrolysis of **13a, 14a, 15a,** and **16a** gave, in high yields, 1,4-bis(4 methoxyphenylb, **1,4-bis(4-chlorophenyl)-,** and 1,4-bis(2 **thieny1)-l,4-butanediones (17, 18,** and **19)** and 1,5-bis(2 **thienyl)-1,5-pentanedione** (20), respectively.

Experimental Section

All melting points were taken on a Yanagimoto micro-melting-point apparatus and are uncorrected. 'H NMR spectra were determined with a Hitachi R-24 (60 MHz) nuclear magnetic resonance spectrometer by using tetramethylsilane (Me,Si) **as** an intemal standard. **IR** and mass spectra were taken with diffraction grating infrared (Japan Spectroscopic Co. Ltd., Type A-202) and high resolution mass (Hitachi, Type RMU-7M) spectrometers, respectively. Microanalytical data were obtained by using a Perkin-Elmer 240 elemental analyzer.

(I) Preparation of a-Amino-a-arylacetonitriles. Those used as the starting materials in this work were prepared according to the procedure reported in the literature³ and are known compounds. Their physical properties agreed with those reported in the literature: α -(dimethylamino)- α -phenylacetonitrile (1a), bp 80-82 °C (2 mmHg) [lit.³ bp 78-79 °C (1 mmHg)]; α -(diethylamino)- α -phenylacetonitrile (1b), bp 80-82 °C (5 mmHg) [lit.⁴ bp 78-80 °C (0.08 mmHg)]; α -pyrrolidino- α -phenylacetonitrile (1c), bp 92-94 °C (2 mmHg) [lit.⁸ bp 101-103 °C (0.01 mmHg)]; **a-morpholino-a-phenylacetonitrile (ld),** mp 68-69 "C (lit.⁵ mp 68-70 °C); α -(N-methylanilino)- α -phenylacetonitrile (1e), mp 66-67 °C (lit.⁶ mp 67 °C); α -(dimethylamino)- α -(4-methoxypheny1)acetonitrile **(loa),** mp 34-35 "C (lit.6 mp 32-35 "C); **a-(dimethylamino)-a-(4chlorophenyl)acetonitrile (1 la),** mp 46-47 ^oC (lit.⁹ 46-48 ^oC); *α*-(dimethylamino)-*α*-(2-thienyl)acetonitrile **(12a),** bp 68-70 "C (3 mmHg) [lit.Io bp 107-108 "C (10 mmhg)]. Boiling points of **lb** and **IC** do not agree with those in the literatures **as** described above, but they gave satisfactory microanalyses as follows. Anal. Calcd for $C_{12}H_{16}N_2$ (1b): C, 76.55; H, 8.57; N, 14.88. Found: C, 76.51; H, 8.53; N, 14.75. Calcd for Cl2HI4N2 **(IC):** C, 77.38; H, 7.58; N, 15.04. Found: C, 77.45; H, 7.56; N, 14.99.

(11) Reaction of a-Amino-a-Arylacetonitriles with Alkyl Dibromides. Preparation of 2,5-Bis(dimethylamino)-2,5 diphenyladiponitrile (2a) as a Typical Example. Under dry nitrogen, diisopropylamine (1.5 mL, 9 mmol) dissolved in a mixture of **5** mL each of dry THF and HMPA was treated with n-butyllithium (6 mL of a 1.67 M solution in hexane, 9 mmol) at -78 °C, the mixture was again cooled to -78 °C, α -(dimethylamino)-a-phenylacetonitrile **(la;** 1.28 g, 8 mmol) dissolved in THF (1 mL) was added, and the reaction mixture was stirred for 15 min at -78 °C and for 1 h at 0 °C. To the mixture again cooled to -78 °C was added 1,2-dibromoethane (0.752 g, 4 mmol) dropwise. After the mixture was stirred for 20 min at -78 °C, the stirring was continued for several hours at the room temperature until the complete disappearance of **la** was confirmed by means of TLC. The reaction mixture was poured into ice and water and then extracted with diethyl ether (3 **X** 50 mL). The combined ether layers were washed with brine and dried with anhydrous sodium sulfate. After the ether was distilled off, the residue was purified by means of column chromatography and

(10) Taylor, H. M. US. Patent **3313683;** *Chem.* Abstr. **1967,67,64073.**

⁽³⁾ Hauser, **C.** R.; Taylor, H. M.; Ledford, T. G. *J. Am. Chem. SOC.* **1960,82, 1786.**

⁽⁴⁾ Yanovskaya, L. A.; Shakhidayatov, K.; Prokofev, E. P.; Andria-nova, G. M.; Kucherov, V. F. Tetrahedron 1968, 24, 4677.

⁽⁵⁾ Morris, G. F.; Hauser, C. R. *J. Org. Chem.* **1961, 26, 4741. (6)** Baldock, R. W.; Hudson, P.; Katritzky, A. R.; Soti, F. *J. Chem.*

SOC., Perkin Trans. **1 1974,12, 1422.**

⁽⁷⁾ Stork, **G.;** Ozorio, A. A.; Leong, A. Y. W. *Tetrahedron Lett.* **1978, 5175.**

⁽⁸⁾ Sakai, H.; Ito, K.; Sekiya, M. *Chem. Pharm.* Bull. **1973,21, 2257.** (9) Bredereck, H.; Simehen, G.; Kantlehner, W. *Chem. Be?.* **1971,104,** 932

recrystallization from ethyl alcohol. Thus, 2,5-bis(dimethyl**amino)-2,5-diphenyladiponitrile (2a)** was obtained in *64%* yield *(886* mg): mp 134-136 "C; IR (KBr) *VCN* 2220 cm-'; 'H NMR (CDCld 6 1.80 (s,4 H), 2.13 **(s,12** H), 7.50 (s-like, 10 **H);** MS, *m/e* 292 (M^+ – 2HCN). Anal. Calcd for $C_{22}H_{26}N_4$: C, 76.27; H, 7.56; N, 16.17. Found: C, 76.05; H, 7.69; N, 16.26.

2,5-Bis(diethylamino)-2,5-diphenyladiponitrile (2b). By use of the same procedure, the reaction of α -(diethylamino)- α phenylacetonitrile **(lb;** 1.50 g, 8 mmol) with l,2-dibromoethane (0.752 g, 4 mmol) was carried out to give 709 mg (22% yield) of **2b:** mp 133-135 °C; IR (KBr) ν_{CN} 2200 cm⁻¹; ¹H NMR (CDCl₃) δ 1.20 (t, 12 H, $J = 8$ Hz), 2.25 (s, 4 H), 3.52 (q-like, 8 H, $J = 8$ Hz), 7.60 (s, 10 H). Anal. Calcd for $C_{28}H_{34}N_4$: C, 77.57; H, 8.51; N, 13.92. Found: C, 77.71; H, 8.53; N, 13.76.

2,5-Dipyrrolidino-2,5-diphenyladiponitrile (2c). By use of the same procedure, the reaction of α -pyrrolidino- α -phenylacetonitrile **(lo;** 1.49 g, 8 mmol) with 1,2-dibromoethane (0.752 g, 4 mmol) was carried out to give 765 mg (48% yield) of 2c: mp 132-135 °C; IR (KBr) v_{CN} 2250 cm⁻¹; ¹H NMR (CDCl₃) δ 1.5-2.1 (m, 12 H), 2.2-2.7 (m, 8 H), 7.61 (s, 10 H); MS, m/e 344 (M⁺· -2HCN). Anal. Calcd for C₂₆H₃₀N₄: C, 78.36; H, 7.59; N, 14.06. Found: C, 78.09; H, 7.65; N, 14.26.

2,5-Dimorpholino-2,5-diphenyladiponitrile (2d). By use of the same procedure, the reaction of α -morpholino- α -phenylacetonitrile (1d; 1.62 g, 8 mmol) with 1,2-bis(tosyloxy)ethane (1.48 g, 4 mmol) was carried out to give 550 mg (32% yield) of **2d:** mp 160-162 °C; IR (KBr) ν_{CN} 2200 cm⁻¹; ¹H NMR (CDCl₃) δ 1.89 (s, 4 H), 2.45 (t-like, 8 H, \ddot{J} = 4 Hz), 3.72 (t, 8 H, $J = 4$ Hz), 7.55 *(8,* 10 H); MS, *m/e* 376 (M'. - 2HCN). Anal. Calcd for $C_{26}H_{30}N_4O_2$: C, 72.53; H, 7.02; N, 13.01. Found: C, 72.39; H, 7.10; N, 13.12.

1 ,5-Bis (dimet hy1amino)- 1,S-dic yano- 1 ,5-dip hen y lpentane (3a). By use of the same procedure, the reaction of α -(dimethylamino)-a-phenylacetonitrile **(la;** 1.282 g, 8 mmol) with 1,3-dibromopropane $(0.808 \text{ g}, 4 \text{ mmol})$ was carried out to give 1.154 g (80% yield) of **3a:** mp 105-107 "C; IR (KBr) *UCN* 2220 cm-'; ¹H NMR (CDCl₃) δ 1.6–2.1 (m, 6 H), 2.27 (s-like, 12 H), 7.44 (s, 10 H); MS, m/e 304 (M⁺ $-$ 2HCN). Anal. Calcd for C₂₃H₂₈N₄: C, 76.63; H, 7.83; N, 15.54. Found: C, 76.43; H, 7.90; N, 15.67.

1,8-Bis(dimet hy1amino)- 1 ,8-dicyano- l,&diphen yloctane (4a). By use of the same procedure, the reaction of α -(dimethylamino)-a-phenylacetonitrile **(la;** 1.282 g, 8 mmol) with 1,6-dibromohexane (0.976 g, 4 mmol) was carried out to give 1.419 g (88% yield) of **4a:** mp 98-100 "C; IR (KBr) *VCN* 2230 cm-'; 'H NMR (CDCl₃) δ 1.05 (br s, 8 H), 1.50-2.0 (br m, 4 H), 2.25 (s, 12 H), 7.40 (s-like, 10 H). Anal. Calcd for $C_{26}H_{34}N_4$: C, 77.57; H, 8.51; N, 13.92. Found: C, 77.62; H, 8.50; N, 13.94.

1,12-Bis(dimethylamino)-l,l2-dicyano-l,l2-diphenyldodecane (5a). By use of the same procedure, the reaction of α -(dimethylamino)- α -phenylacetonitrile (1a; 1.282 g, 8 mmol) with 1,lO-dibromodecane (1.2 g, 4 mmol) was carried out to give ca. 2.0 g of crude **5a** (above 90% yield). The compound **5a** was hydrolyzed in a silica gel column, and a mixture of **5a** and the corresponding diketone **(9)** was obtained. The mixture was not purified and directly led to the diketone **9** by subsequent hydrolysis.

2,5-Bis(dimethylamino)-2,5-bis(4-methoxyphenyl)adiponitrile (13a). By use of the same procedure, the reaction of **a-(dimethylamino)-a-(4-methoxyphenyl)acetonitrile (loa;** 1.522 g, 8 mmol) with 1,2-dibromoethane $(0.752$ g, 4 mmol) was carried out to give 0.602 g (37% yield) of **13a:** mp 137-139 "C; IR (KBr) *VCN* 2240 cm-'; 'H NMR (CDC13) 6 1.78 *(8,* 4 H), 2.16 *(8,* 12 H), 3.85 (s, 6 H), 6.90 (d, 4 H, $J = 9$ Hz), 7.38 (d, 4 H, $J = 9$ Hz). Anal. Calcd for $C_{24}H_{30}N_4O_2$: C, 70.91; H, 7.44; N, 13.78. Found: C, 70.73; H, 7.59; N, 13.57.

2,5-Bis(dimethylamino)-2,5-bis(4-chlorophenyl)adiponitrile (14a). By use of the same procedure, the reaction of **a-(4-~hlorophenyl)-a-(dimethylamino)acetonitrile (1 la;** 0,752 g, **4** mmol) was carried out to give 0.602 g **(59%** yield) of **14a:** mp 160-162 °C; IR (KBr) $ν_{CN}$ 2230 cm⁻¹; ¹H NMR (CDCl₃) δ 1.78 (s, 4 H), 2.19 *(8,* 12 H), 7.44 *(8,* 8 H); MS, *m/e* 359 (M+. - 2HCN). Anal. Calcd for $C_{22}H_{24}N_4Cl_2$: C, 63.62; H, 5.79; N, 13.49. Found: C, 63.42; H, 5.90; N, 13.61.

2,5-Bis(dimethylamino)-2,5-bis(2-thienyl)adiponitrile (15a). By use of the same procedure, the reaction of α -(di**methylamino)-a-(2-thienyl)acetonitrile (12a;** 1.33 g, 8 mmol) and 1,2-dibromoethane $(0.752 \text{ g}, 4 \text{ mmol})$ was carried out to give 0.344 g (24% yield) of 15a: mp 120-122 °C; IR (KBr) v_{CN} 2220 cm⁻¹; $= 4$ *Hz*), $7.25 - 7.55$ (m, 4 *H*). *Anal. Calcd for* $C_{18}H_{22}N_4S_2$: *C*, 60.30; H, 6.18; N, 15.63. Found: C, 60.17; H, 6.31; N, 15.52. 1 H NMR (CDCl₃) δ 1.95 (s, 4 H), 2.30 (s, 12 H), 7.01 (t, 2 H, *J*

1,5-Bis(dimet hylamino) - **1,5-dicyano- 1,5- bis (2-t hieny1) pentane (16a).** By use of the same procedure, the reaction of α -(dimethylamino)- α -(2-thienyl)acetonitrile (12a; 1.33 g, 8 mmol) with 1,3-dibromopropane $(0.808 g, 4 mmol)$ was carried out to give 1.162 g (78% yield) of 16a: mp 122-124 °C; IR (KBr) ν_{CN} 2240 cm-'; 'H NMR (CDC13) 6 1.58 (t-like, 4 H, *J* = 6 **Hz),** 1.80-2.20 (m, 2 H), 2.28 **(s,** 12 H), 6. 90 (t, 2 H, *J* = *5* Hz), 7.18 (d, 2 H, $J = 5$ Hz), 7.32 (d, 2 H, $J = 5$ Hz). Anal. Calcd for C₁₉H₂₄N₄S₂: C, 61.26; H, 6.49; N, 15.04. Found: C, 61.18; H, 6.47; N, 15.19.

2,3-Dimorpholino-2,3-diphenylsuccinonitrile (21) and 2-Morpholino-2-phenyl-3-butenenitrile (23). By use of the same procedure, the reaction of α -morpholino- α -phenylacetonitrile **(la;** 1.618 g, 8 mmol) with 1,2-dibromoethane (0.752 g, 4 mmol) was carried out to give 290 *mg* (18% yield) of **21,36** mg (4% yield) of **23,** and a substantial amount of unreacted **Id.** Physical properties of 21 are as follows: mp 153-154 °C; IR (KBr) v_{CN} 2260 cm⁻¹; ¹H NMR (CDCl₃) δ 2.62 (d, 8 H, $J = 9$ Hz), 3.72 (d, 8 H, *J* = 9 Hz), 7.40 *(8,* 10 H); MS, *m/e* 402 (M'.). Anal. Calcd for N, 13.74. $C_{24}H_{23}N_{4}O_{2}$: C, 71.62; H, 5.51; N, 13.92. Found: C, 71.30; H, 5.39;

Physical properties of **23** are **as** follows: viscous oil; IR (KBr) v_{CN} 2260 cm⁻¹; ¹H NMR (CDCl₃) δ 2.55 (t, 2 H, $J = 4$ Hz), 2.64 $(t, 4 H, J = 4 Hz)$, 3.75 $(t, 4 H, J = 4 Hz)$, 5.30 (dd, 1 H, $J = 8.3$) Hz), 5.80 (d, 1 H, J = 3 Hz), 5.85 (d, 1 H, *J* = 8 Hz), 7.3-7.8 (m, 5 H); MS, m/e 228 (M⁺·). Anal. Calcd for C₁₄H₁₆N₂O: C, 73.66; H, 7.06; N, 12.27. Found: C, 73.41; H, 6.89; N, 12.49.

(111) Preparation of Symmetrical Diketones by Hydrolysis. The hydrolysis was carried out according to the procedure reported in the literature.' The typical procedure is as follows: a mixture of **2a** (150 mg, 0.4 mmol) dissolved in a solution of 3 **mL** each of THF and 30% aqueous oxalic acid was gently refluxed for 90 min and then extracted with diethyl ether $(3 \times 15 \text{ mL})$. The ether layer was washed with brine and dried with anhydrous sodium sulfate. After the solvent was distilled off, 1,4-diphenyl-l,4-butanedione **(6)** was recrystallized from ethanol and obtained in 92% yield (95 mg); mp 143-145 °C (lit.⁸ mp 144-145 $^{\circ}$ C).

1,5-Diphenyl-l,S-pentanedione (7). By use of the same procedure, the hydrolysis of **3a** (150 mg, 0.4 mmol) was carried out to give 7: 105 mg (84% yield); mp 64-66 °C (lit.¹¹ mp 65-66 $\rm ^{o}C$).

1,8-Diphenyl-1,8-octanedione (8). By use of the same procedure, the hydrolysis of **4a** (202 mg, *0.5* mmol) was carried out to give 8: 147 mg (98% yield); mp 86-87 °C (lit.¹⁶ mp 85-87 °C).

1,12-Diphenyl-1,12-dodecanedione (9). By use of the same procedure, crude **58,** which was not purified, was directly hydrolyzed to give 9: 84% overall yield from 1a; mp 94-96 °C (lit.¹² mp 96-97 °C).

1,4-Bis(4-methoxyphenyl)-1,4-butanedione (17). By use of the same procedure, the hydrolysis of **13a** (162 mg, 0.4 mmol) was carried out to give **17:** 90 mg (76% yield); mp 153-155 "C (lit.9 mp 154-155 "C).

1,4-Bis(4-chlorophenyl)-1,4-butanedione (18). By use of the same procedure, the hydrolysis of **14a** (200 mg, **0.5** mmol) was carried out to give 18: 116 mg (78% yield); mp 148-149 °C (lit.¹³ mp $150 °C$).

1,4-Bis(2-thienyl)-l,4-butanedione (19). By use of the same procedure, the hydrolysis of **15a** (108 mg, 0.3 mmol) was carried out to give 19: 70 mg (93% yield); mp 130-132 $^{\circ}$ C (lit.¹¹ mp 131-132 "C).

1,5-Bis(2-thienyl)-1,5-pentanedione (20). By use of the same procedure, the hydrolysis of **16a** (112 mg, **0.3** mmol) was carried out to give 20: 79 mg (86% yield); mp 88-89 °C (lit.¹¹ mp 88-89 $\rm ^{\circ}C$).

⁽¹¹⁾ Oweley, D. C.; Nelke, J. M.; Bloomfield, J. J. *J. Org. Chem.* **1973, 38,901.**

⁽¹²⁾ Hey, D. H.; Stirling, C. J. M.; Williams, G. H. *J. Chem. SOC.* **1967, 1054.**

⁽¹³⁾ Nozaki, H.; Shirafuji, **T.;** Kuno, **K.; Yamamoto, Y.** *Bull. Chem.* **SOC.** *Jpn.* **1972,45,856.**

Benzil (22) and **Vinyl Phenyl Ketone** (24). By use of the same procedure, the hydrolyses of 21 (161 mg, 0.4 mmol) and 23 (114 mg, 0.5 mmol) were carried out to give 22: [45 mg (53% yield); mp 92-93 **"C** (lit.14 mp 93-95 **"C)]** and 24: 42 mg (64% yield); bp 98-100 °C (10 mmHg) [lit.¹⁵ bp 114-115 °C (17 mmHg)].

Registry No. la, 827-36-1; lb, 5097-99-4; IC, 31466-31-6; Id, 15190-10-0; **le,** 15190-67-7; 2a, 85356-09-8; 2b, 85356-10-1; 2c, 85356-11-2; 24 85356-12-3; 3a, 85356-13-4; 4a, 85356-14-5; 5a, loa, 15190-053; lla, 15190-08-6; **12a,** 15190-02-0; 13a, 85356-167; 14a, 85356-17-8; 15a, 85356-18-9; **16a,** 85356-19-0; 17,15982-64-6; 85356-15-6; 6,495-71-6; 7,6263-83-8; 8,6268-58-2; 9,66901-95-9; 18,24314-35-0; 19,13669-05-1; 20,37709-57-2; 21,85356-20-3; 22, 134-81-6; 23, 85356-21-4; 24, 768-03-6; TsOCH₂CH₂OTs, 6315-52-2; 1,2-dibromoethane, 106-93-4; 1,3-dibromopropane, 109-64-8; 1,6-dibromohexane, 629-03-8; 1,lO-dibromodecane, 4101-68-2.

(14) Macaione, **D. P.;** Wentworth, S. E. *Synthesis* **1974, 716. (15)** Caasar, **L.;** Chiusoli, G. P.; Foa, M. *Chim. Znd. (Milan)* **1968,50,**

515: *Chem. Abstr.* **1969.** *70.* **114671. (16)** Neckers, **D.** C.; **Kellogg,** R. M.; **Prim,** W. L.; Schoustra, B. J. *Org. Chem.* **1971,36, 1838.**

Cross-Coupling Reaction of 1,3-Butadien-2-ylmagesium Chloride with Alkyl or Aryl Halides by Lithium Chloride-Cupric Chloride (Li₂CuCl₄), a Superior Catalyst

Sadaaki Nunomoto*

Faculty of Chemical Engineering, Toyama Technical College, Hongo, Toyama 930, *Japan*

Yuhsuke Kawakami* and Yuya Yamashita

Department of Synthetic Chemistry, Faculty of Engineering, Nagoya University, Chikusa, Nagoya 464, Japan

Received June 11, 1982

Cross-coupling reactions of Grignard reagents have been reported with alkyl, allyl, alkenyl, and aryl halides in the presence of various kinds of transition-metal catalysts.¹⁻⁸ The authors **also** reported that copper(1) iodide (CUI), and **tetrakis(triphenylphosphine)palladium(O)** (Pd(PPh3),) were effective catalysts in the cross-coupling reactions of **1,3-butadien-2-ylmagnesium** chloride **(1)** with alkyl and aryl iodides, respectively.⁹

In the course of our studies in exploring more efficient and selective catalyst systems, $Li₂CuCl₄$, initially reported by Tamura and Kochi,² was found to be a very effective and selective catalyst for the coupling reactions of **1** with primary alkyl iodides or bromides. In the cross-coupling reactions of Grignard reagent, $Li₂CuCl₄$ generally appears to be quite a good catalyst. Fouquet¹⁰ and Chapman¹¹

-
- **(6) A.** Fujioka, **S.** Kodama, I. Nakajima, A. Minato, and M. Kumada, *Lett.,* **1181 (1977).**

improved the yields by the use of tosylate as a leaving group. Selective coupling of ω -bromo acid was also reported by Baer.¹²

In this note, we report the syntheses of 2-substituted 1,3-butadienes and selective cross-coupling reactions of mixed halides taking advantage of the high reactivity of primary alkyl iodide and bromide.

Cross-Coupling Reactions of 1 with Octyl Halides. The results of the cross-coupling reactions of Grignard reagents with octyl halides are shown in Table I.

$$
CH2=CH2CH2 + RX $\frac{cat.}{}$
\n
$$
HgCl
$$
\n
$$
CH2=CHC=CH2 + MgClX (1)
$$
$$

The reactions with CUI **as** catalyst gave only reasonable yields. Even with the iodide (no. **1,2)** considerably large amounts of the catalyst were required. On the contrary, good to excellent yields could be obtained even with the bromide by employing only small amounts of Li₂CuCl₄ as catalyst (no. 6, 7).

Although a little longer reaction time is required, the $Li₂CuCl₄$ system has several advantages over the CuI system: namely, moderate reaction temperature, smaller amounts of catalyst, higher yield of the product, and easiness of the separation of the product.

The order of reactivity of the halides was $I > Br \gg Cl$, and secondary halides showed much lower reactivity than primary halides.

Cross-Coupling Reactions of 1 **with Aryl Halides.** The results of the cross-coupling with aryl halides are shown in Table **II.** Despite the relatively lower reactivities of aryl halides, reasonable yields of the cross-coupled product could still be obtained from aryl iodide substrate (no. 17). The bromide showed considerably lower reactivity than iodides. of aryl halides, reasonable yields of the cross-coupled
product could still be obtained from aryl iodide substrate
(no. 17). The bromide showed considerably lower re-
activity than iodides.
Taking advantage of the differe

Taking advantage of the differences in reactivity, the selective cross-coupling reactions of the aromatic dihalides were investigated (no. 18-22).

In the cross-coupling reactions of 1 with halides having both aromatic and aliphatic halogens, yields as high as 87% of the selectively coupled product, namely, 2-halogenoaromatic-substituted butadienes, could be obtained. It was interesting to note that the aromatic halogen was not affected at all in the reaction.

However, with Pd(PPh3)4 **as** catalyst, the aromatic iodide preferentially reacted (no. 23).

Cross-Coupling Reactions of 1 with Functional Halides. The cross-coupling reactions of **1** with halides containing other functional groups were **also** investigated, and the results are given in Table 111. The cross-coupling

⁽¹⁾ M. Tamura and J. K. Kochi, *J. Am. Chem. Soc.*, 93, 1485 (1971).
(2) M. Tamura and J. K. Kochi, *Synthesis*, 303 (1971).
(3) L. Friedman and A. Shani, *J. Am. Chem. Soc.*, 96, 7101 (1974).
(4) R. S. Smith and J. K. Ko

⁽⁷⁾ S. Murahashi, M. Yamamura, K. Yanagisawa, N. Mita, and K. *Bull. Chem.* **SOC.** *Jpn.,* **49, 1958 (1976).**

⁽⁸⁾ Y. Kajihara, K. Ishikawa, H. Yasuda, and A. Nakamura, Bull. Kondo, *J. Org. Chem.,* **44, 2408 (1979).**

⁽⁹⁾ S. Nunomoto, Y. Kawakami, and Y. Yamashita, Bull. *Chem.* **SOC.** *Chem.* **SOC.** *Jpn.,* **53, 3035 (1980).**

Jpn., **54, 2831 (1981).**

⁽¹⁰⁾ G. Fouquet and M. Schlasser, *Angew.* Chem., *Int. Ed. Engl.,* **13, 82 (1974).**

^{(11) 0.} L. Chapman, K. C. Mattes, R. C. Sheridan, and J. A. Klun, *J. Am. Chem.* **Soe., 100, 4878 (1978).**

⁽¹²⁾ T. **A.** Baer and R. L. Carney, *Tetrahedron Lett.,* **4697 (1976).**